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    Abstract - This paper introduces a new method for
controlling selection pressure in fine-grained parallel GAs. Our
model, inspired by percolation theory, employs a “seeding”
mechanism, which provides a means of systematically increasing
the population size until the carrying capacity of the lattice is
reached. Initially, a relatively small number of individuals
(solutions) occupy small isolated patches (demes). As time goes
by, additional randomly generated individuals are added to the
lattice. As the density increases, the small isolated demes
gradually merge to form larger connected demes. This
“percolation process” helps to balance the interplay between
genetic and population forces. The implications of alternative
migration schemes between demes are also investigated in terms
of the population diversity, selection pressure and consequently
algorithm performance. Experimental results using benchmark
optimisation problems confirm that the “step-wise” increase in
the population density does affect the quality of the solutions
found in a given trial.

1.  INTRODUCTION

Genetic algorithms (GA) are abstract implementations of
natural evolutionary processes used to solve search and
optimisation problems [1][2]. Recently, there has been
increased interest in parallel versions of the algorithms, in
particular where the population has a spatial structure [3]-[5].
The most common implementations are the coarse-grained
(or island) model and the fine-grained (or grid) model.  In a
coarse-grained model, the GA population is divided into
multiple subpopulations (or demes). Each subpopulation
evolves independently, with only occasional exchanges of
individuals between subpopulations. This isolation promotes
diversity, thereby helping to prevent premature convergence
across the population as a whole. In a fine-grained model,
individuals are commonly mapped onto a 2-dimensional
lattice, with one individual per node [6]. Fitness evaluation of
individuals is carried out in parallel using discrete time steps.
Selection and crossover occurs locally within small,
overlapping neighbourhoods. Subsequently, good genes
slowly diffuse across the lattice.

The benefits of isolating subpopulation have long been
known in the field of evolutionary algorithms [7]-[9]. Parallel
GAs are known to handle difficult multimodal functions more
efficiently than serial GAs [10].  However, both the course
and fine-grained models are artificially constrained.  The
quality of the search and efficiency of the algorithms can be
severely affected by the parallel parameter settings [11].  For
example in the coarse-grained model, one has to decide the

number and size of subpopulations, migration frequency, the
number of migrating individuals and migration topology.
Currently most of these parameters are determined
empirically and there is no generally accepted agreement on
how to choose them [12].   Empirical studies of coarse-
grained parallel GAs and various specifications of
subpopulation size and number and migration policies can be
found in a number of papers [7][10][13].  In the case of the
fine-grained model, much of the research has concentrated on
the effects of neighbour size and shape [14]. Sarma and De
Jong found that the ratio of the radius of the local
neighbourhood to the lattice size could be used as an
adjustable parameter to control the selective pressure [14]. In
previous work, we have examined the effects of introducing
ecological features (eg. disturbances, metapopulation
concepts) into the fine-grained model [15][16]. An important
feature of these models was the “extinction-colonisation”
cycle, which provided a mechanism for continuously varying
the size and structure of the evolving population, thereby
allowing previously suppressed individuals the opportunity to
survive and reproduce.

In this paper, we introduce another form of spatial
separation in addition to the “isolation-by-distance” that
already exists in a fine-grained parallel GA.  The proposed
model employs a “seeding” method that provides a means of
varying the population density across the 2-dimensional
lattice. Here, individuals are added to the lattice based on a
specified probability and time interval. Initially, a large
number of small demes are formed. As the run progresses, the
demes slowly merge. This process allows a natural formation
of demes, eliminating the need for pre-specifying the size and
number of demes. The selection pressure can be also adjusted
via the seeding method and migration schemes. Our model is
a hybrid parallel GA combining the features of both coarse-
grained and a fine-grained algorithms [3][5][15]. The
motivation for this approach is derived from “percolation
theory”, where the effects of density and formation of clusters
on the global behaviour of a system have been the subject of
study [17]. In this research, we examine the effects of varying
population density on the performance of a density-based
fine-grained PGA model.

The remainder of the paper is organised as follows. In
Section 2, we provide a brief outline of percolation theory
and discuss the motivation for this research. Section 3
presents a description of our model. The experiments and
results follow this. In Section 5, we discuss the implications
of the results.  Finally we give our conclusion.
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2. WHAT IS PERCOLATION?

Percolation theory is the study of connectivity in
stochastically generated structures [17]. Consider a 2-
dimensional lattice in which cells of the lattice are occupied
with probability p and are left unoccupied with probability 1 -
p. A standard mathematical result in lattice percolation is the
emergence of a large “spanning cluster” at a critical
probability pcrit. The value of pcrit is determined by the
connectivity rules. If connections between adjacent, occupied
lattice cells are restricted to occur only in north, south, east,
and west directions, then the pcrit is equal to 0.5928 for a 2-
dimensional lattice[17]. That is, if the proportion of occupied
cells is greater than or equal to this value, there is a higher
probability of spanning the lattice (Fig 1b). Other critical
probabilities can be obtained by changing the connectivity
rule, for example, by allowing connections to run diagonally
(northeast, southwest, etc.) between occupied cells.

This basic idea is best illustrated using a simple example
given in Fig. 1.  Assume that occupation of the cells on a 2-
dimensional lattice is at random, i.e., the state of each cell
(occupied or empty) is independent of status of its
neighbours.  In Fig. 1a, note that some cells are filled,
whereas others are left empty.  We can define a cluster
(deme) as a group of neighbouring cells with a common side
(i.e., nearest neighbour sites). There are two such demes
shown Fig. 1a.  We consider all sites within a deme to be
connected to each other by one “unbroken chain”.  Fig. 1b
shows that when density of occupied cells increases, there is
a greater chance that a deme will contain an “unbroken
chain” that spans from one boundary of the lattice to another.

In this paper, we combine percolation theory and fine-
grained parallel GAs to create a hybrid algorithm where the
size of the evolving population slowly increases (until the
carrying capacity is reached). The rationale for this approach
is that if we control the rate of diffuse of genetic material
across the lattice, population diversity will be maintained and
high quality solutions (i.e., fitter individuals) will slowly
spread across the lattice.  In our model, the need to specify
the number and size of demes in the parallel GA has been
removed.  As the density of occupied cells slowly increases,
small demes merge with other small demes creating larger
demes. This will eventually lead to the formation of spanning
clusters and eventually all cells in the lattice will be occupied.

3. DESCRIPTION OF THE MODEL

3.1 Fine-grained Model Parameters

Individuals of the GA population are distributed randomly
across the 2-dimensional lattice. The probability of a cell
being occupied is p, mimicking the percolation phenomenon
described in the previous section. It is important to note that
the status of a particular cell is independent of the status of its
surrounding neighbours.

Two types of local neighbourhoods are considered here:
the 4 -cell Von Neumann neighbourhood  (north, south, east
and west) and the 8-cell Moore neighbourhood (Von
Neumann set plus four diagonal neighbours). Selection is
based on a form of tournament selection where the best
individual from the local neighbourhood is selected as the
mate. The offspring generated then compete with their parent
to occupy the current cell. In this form of crowding, only the
fittest offspring replace their parent.

3.2 Percolation Model Parameters

Two new parameters are used to control the density of the
population: seeding interval and seeding probability. After a
fixed number of generations have elapsed (the seeding
interval) the lattice is scanned and new individuals may be
introduced into the population.  If a cell is currently occupied
the individual occupying the cell simply continues to occupy
the cell. However, if the cell is currently empty, the
probability of a new randomly generated individual
occupying the cell is determined by the seeding probability.
This seeding mechanism provides a way of gradually
increasing population density as time progresses (see Fig. 2).

In the early stages of a trial run, many small demes will
exist. As a consequence of the local neighbourhood
restrictions, each deme will evolve independently perhaps
converging. However, genetic diversity as a whole will be
preserved across the lattice [18]. These isolated demes can be
considered as being equivalent to the subpopulations in a
typical “island model”.  Empty cells act as barriers preventing
interaction between different demes. As population density
increases, more and more empty cells are taken over by
newly arrived individuals. The newly occupied cells provide
a “link in the chain”. The resulting aggregation of demes
allows for the slow diffusion of genetic material across the
lattice.

3.3 Migration schemes

The rate at which the fragmented demes merge is controlled
by the seeding mechanism. However, the introduction of
fitter individuals into an isolated deme may also enhance the
search process [4]. Consider the scenario described in Figure
3. Here, all individuals are ranked based on their fitness
values (A has the best fitness - H the worst fitness value).
Fitter individuals (eg. A and B) can be selected to replace G
and H respectively.  This migration mechanism provides an

a) b)

Figure 1. Demes formed by “connected nearest neighbours”.
a) two small demes have formed; b) a percolating cluster  has
formed spanning from one boundary of the lattice to another.
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additional means of controlling selection pressure across the
population as a whole.

Two alternative migration mechanisms are examined in
this paper. In the first method (M1), a culling process is
applied to the evolving population. Here, a fixed percentage
of the least-fit individuals are removed and replaced with the
best individuals from the remaining population. In the second
method (M2), rather than using the best individuals to replace
the least-fit individuals, we use the individuals selected as a
result of running tournament of size of two from the
remaining fitter population. These selected individuals will
then be used to replace the least-fit ones. The introduction of
clones of “good” individuals to diverse areas of the lattice
(depending on where these least fit individuals are located) is
similar to the periodical migration among sub-populations in
a typical “island model”. M1 should provide the greatest
selection pressure. The selective pressure of M2 will be
somewhat less than M1, however, it will be stronger than no
migration (NM) at all.

4. EXPERIMENTS AND RESULTS

4.1 Test functions

To evaluate the performance of our density-based parallel GA
we use the following  benchmark functions, which are all
considered to be difficult multimodal functions. Each
function is defined such that its global minimum is 0.0:
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where k = 40 and unitation values given in Table 1 below.
MMDP is made up of k subproblems with 6 bits each.  Every
subproblem contributes to the fitness according to its
unitation given in the Table 1.  The optimum has a value of k,
but for consistency with other test functions used here, we
turn this maximization into a minimization problem with a
global minimum of 0.0.

4.2  Model Parameters

Table 2 lists the model parameters used. All individuals are
encoded using a binary chromosome. Two-point crossover is
used with bit-flipping mutation. Two different local
neighbourhood sizes are examined  (4 cell and 8 cell nearest
neighbours).

To effectively explore the impact of the seeding
mechanism it is necessary to employ a reasonably large
lattice. Here we set the carrying capacity of the lattice to be
1600 individuals (40x40 square lattice). We restrict the total

Table 1: Unitation values for the 6-bit deception problem MMDP.

Unitation Subproblem value
0 1.0
1 0.0
2 0.360384
3 0.640576
4 0.360384
5 0.0
6 1.0

Table 2: Density based fine-grained parallel GA configuration

Fine-grained parallel GA standard parameters
Representation binary 16 bits per function variable
Crossover rate =1.0,  two-point binary mode
Mutation rate =0.001, bit-flipping
Population size maximum of 1600 (40x40 lattice)
Local selection tournament in local neighbourhood
Termination maximum of 250 generations
Update only fitter offspring replace parent

Additional parameters for the density-based model
Seeding probability =0.2, 0.4, 0.6, 0.8 and 1.0

interval = every 10 generations
Migration rate = 0.01,  every 5 generations

NM or M1 or M2

      
         t=0                      t=40                      t=120                        t=250

Figure 2 : Snapshots of the evolving population with a seeding
probability of 0.2 and a seeding interval of 40. Greyscale of the
cells on the lattice refers to levels of fitness of individuals.
Lighter colours to indicate higher fitness values.  Black cells
indicate empty sites.
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a)    b)
Figure  3.  a) before migration; b) after migration.
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Table 3: MBF and SD (4-cell neighbourhood).

Seeding
probability 0.2 0.4 0.6 0.8 1.0

NM 3.98E-01±3.45E-01 1.99E-01±4.52E-02 2.30E-01±1.80E-01 1.92E-01±3.82E-02 1.91E-01±2.81E-02

M1 1.79E+00±1.15E+00 1.03E+00±7.83E-01 6.81E-01±7.99E-01 7.05E-01±7.65E-01 4.28E-01±4.49E-01

Rastrigin

M2 5.64E-01±5.32E-01 2.08E-01±6.50E-02 2.07E-01±1.82E-01 2.07E-01±1.94E-01 1.74E-01±2.83E-02

NM 3.82E-01±8.55E-02 3.29E-01±5.91E-02 3.48E-01±1.16E-01 3.12E-01±5.84E-02 3.39E-01±8.38E-02

M1 3.12E-01±7.26E-02 2.74E-01±7.68E-02 2.77E-01±6.09E-02 2.69E-01±6.48E-02 2.51E-01±8.44E-02

Griewangk

M2 3.89E-01±9.26E-02 3.63E-01±8.45E-02 3.26E-01±8.77E-02 3.33E-01±9.29E-02 3.04E-01±7.94E-02

NM 5.99E-02±1.36E-01 1.20E-02±6.56E-02 0.00E+00±0.0E+00 1.20E-02±6.56E-02 0.00E+00±0.0E+00

M1 1.51E+00±6.65E-01 8.51E-01±5.21E-01 5.39E-01±3.63E-01 3.45E-01±4.43E-01 2.64E-01±3.39E-01

MMDP

M2 2.04E-01±2.62E-01 3.59E-02±1.10E-01 0.00E+00±0.0E+00 1.20E-02±6.56E-02 1.20E-02±6.56E-02

Table 4: MBF and SD (8- cell neighbourhood).

Seeding
probability

0.2 0.4 0.6 0.8 1.0

NM 4.59E-01±4.96E-01 3.06E-01±3.91E-01 1.82E-01±4.73E-02 2.44E-01±2.52E-01 1.75E-01±3.61E-02

M1 2.20E+00±1.83E+00 1.33E+00±1.04E+00 1.07E+00±9.47E-01 8.35E-01±6.94E-01 4.20E-01±4.20E-01

Rastrigin

M2 3.93E-01±4.10E-01 2.58E-01±2.54E-01 2.39E-01±2.69E-01 1.81E-01±3.33E-02 2.45E-01±2.57E-01

NM 3.62E-01±9.52E-02 3.41E-01±8.04E-02 3.36E-01±8.30E-02 3.21E-01±7.03E-02 2.94E-01±7.16E-02

M1 3.30E-01±9.14E-02 2.95E-01±6.81E-02 2.79E-01±6.91E-02 2.73E-01±6.48E-02 2.33E-01±7.35E-02

Griewangk

M2 3.85E-01±1.52E-01 3.39E-01±7.80E-02 3.44E-01±9.65E-02 3.30E-01±7.53E-02 3.09E-01±6.80E-02

NM 1.25E+01±6.03E-01 6.71E+00±9.41E-01 1.99E+00±8.69E-01 9.17E-01±6.07E-01 3.12E-01±4.50E-01

M1 1.72E+00±8.04E-01 1.03E+00±8.16E-01 6.32E-01±6.49E-01 4.65E-01±6.34E-01 3.95E-01±3.45E-01

MMDP

M2 2.28E-01±3.33E-01 7.19E-02±1.74E-01 0.00E+00±0.0E+00 3.59E-02±1.10E-01 0.00E+00±0.0E+00

number of evaluations for a fully occupied lattice (density =
1.0) to be 400,000 or a maximum of 250 generations. We
systematically vary the seeding probability from 0.2 up to 1.0
in steps of 0.2. Note that in the case of density value of 1.0,
the model is equivalent to a typical fine-grained parallel GA.

For all trials, the seeding interval was kept constant (every
10 generations). Fig.  4 plots the population density vs time
for a typical run. When a smaller seeding probability is used
there will be fewer fitness evaluations. When the migration
option was turned on, the migration interval was set to every
5 generations. It is important to note that we do not use local
optimisations techniques (eg., hill-climbing) as our objective
is to focus on the effectiveness of the seeding method and the
migration schemes used.

Each configuration was executed thirty times. The mean
best fitness (MBF) and standard deviation (SD) over the
independent trials are the performance metrics reported (see
Table 3 and 4).

4.3 Population diversity

We are also interested in determining the impact of
population density on diversity. To do this, we focus on the
frequency of specific alleles (bit values). A GA population
may be perceived as a form of memory, storing information
in the form of allele frequencies.  Its ability to adapt depends
critically on allelic diversity.  Allelic diversity of a GA
population can be measured by the observed allele
frequencies as compared with the allele frequencies of a
maximally diverse population. For example, if we consider
loci with exactly 2 alleles, then the maximum diversity is
obtained when each allele frequency is 0.5. The diversity of
alleles of a GA population at locus (bit position) i can be
defined as

2)_5.0(41 ii freqobservedD −−= (1)
where observed_freqi is the frequency of the 0 allele at locus i
[19].  Note that Di may range from 0.0 to 1.0. Di being 0.0
indicates complete fixation (convergence), while 1.0 indicates
the maximum possible genetic diversity.  The genetic
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diversity of the population for the entire chromosome
(individual) S, can be given by:

|| S
iD

D
∑

= (2)

The above D also ranges from 0.0 (fixation) to 1.0
(maximal diversity).

Figure 5 and 6 plot the change in allele frequency for each
configuration examined using the MMDP with NM.

5. DISCUSSION

The ability to control selection pressure is often seen as a
critical performance parameter in parallel GAs. Here, we
show that changes in the structural complexity of the spatially
distributed population do have an impact on the selection
pressure and subsequently the diversity of the evolving
population. An important feature of our model is the gradual
increase in the density of occupied cells in the lattice. The
starting point is usually an empty lattice with a small number
of individuals. As time increases, new individuals are added
to the lattice. The aggregation of small, isolated demes
eventually results in the emergence of a “spanning” or
“percolation cluster”. Initially, the flow of genetic material is
restricted to the fragmented patches. However, as the density
of the occupied cells increases, genetic material diffuses
slowly across the lattice.

Tables 3 and 4 show the results for each of the parameter
settings examined. In Table 3 the results for the 4-cell local
neighbourhood are reported. Table 4 records the 8-cell local
neighbourhood results. Each table illustrates the impact of
increasing the population density on the best solution found
averaged over 30 independent trails.

In Table 3, there is a general degradation in performance
within each migration category as the density value decreases
from 1.0 to 0.2, for each of the test functions. The spatial
separation introduced by the seeding method alone (i.e.,
without using migration) does not really improve the
performance on the Rastrigin and Griewangk functions,
however, there is improved performance on the MMDP.  This
result is in agreement with the results reported by Whitley et.
al using a “island model” [10], in which they claimed that
increasing parallelism, (the use of more demes) does not help
when solving the Rastrigin function, but does help on the
deceptive function. The optima was found in all 30 runs for
the MMDP with NM or M2 + a seeding probability of 0.6.
Using the NM + seeding probability of 1.0 settings, we were
also able to find the optima in all 30 runs, however this
configuration uses more evaluations. If we compare the
results obtained between NM, M1 and M2, it is interesting to
see that the combination of a migration scheme and seeding
method does in fact lead to improved performance. For the
Rastrigin function, M2 + seeding probability of 1.0 leads to a
better result than NM + seeding probability of 1.0.  For the
Griewangk function, it is even more obvious that M1, using
all the seeding probability values, are equal or better than all
the results obtained using NM. In the case of the MMDP
function,  both  migration  NM and  M2  used  with  a seeding

Figure 4. The proportion of individuals increases as a result of the
seeding mechanism. Note the “stair-case” effect as time increases.

Figure 5. Diversity vs generation for the MMDP function: 4-cell
local neighbourhood, migration option turned off.

Figure 6. Diversity vs generation for the MMDP function: 8-cell
local neighbourhood, migration option turned off.
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probability of 0.6 results in the optima being found in all 30
runs. This indicates that spatial separation introduced by
using the seeding method can be effective if used in
conjunction with migration schemes. However, when the M1
migration method was used, the increased selection pressure
resulted in a drop off in performance.

The results for the Rastrigin and Griewangk functions
using the 8-cell local neighbourhood (Table 4) are very
similar to the smaller neighbourhood listed in Table 3. For
the MMDP function, we can observe that the increased local
selection pressure limits the ability of the algorithm to find
the optimal solution. Once again, migration scheme M2
combined with a seeding probability of 0.6 leads to the best
results.

An important aspect of this study was to examine the
relationships between population density, diversity, and the
quality of solution found. Plots of population diversity
(measured by allelic diversity) versus time for the MMDP
function can be seen in Fig. 5 and 6. In the smaller 4-cell
local neighbourhood (Fig. 5) greater levels of diversity are
evident as compared to the larger neighbourhood (Fig. 6). Of
interest here is the clustering of the plots when the 4-cell
neighbourhood is used and the migration option is turned off
(NM). This can be attributed to weaker selection inherent in
this model. However, when the seeding method is used in
conjunction with M1 or M2, differences are evident in the
diversity curves. The migration schemes effectively
reintroduces the best (using M1) or fitter (using M2)
individuals into the population, thereby increasing selection
pressure. In the case of the 8-cell local neighbourhood, the
impact of the seeding method are more pronounced.

6.  CONCLUSION

In this paper, we have described a method to adjust selection
pressure in a fine-grained parallel GA by varying population
density.  This method does not require a pre-determined
specification of the number and size of demes.  Instead, the
formation of demes occurs naturally by using a seeding
method that periodically injects new individuals onto the 2-
dimensional lattice. There is no fixed migration topology.
Migration of “fit” individuals to different demes can be
carried out without explicitly specifying which demes they
are assigned to. Preliminary experiments have been
conducted and the results show that the seeding method and
migration schemes can induce a range of different selection
pressure.  In conclusion, we make the following observations:

� It is possible to adjust selection pressure in fine-grained
parallel GAs by controlling the density of the population;

� The use of small, isolated demes in the preliminary stages
of a run helps to foster genetic diversity across the
population as a whole;

� The coalescing of demes, as a result of increased density,
combined with suitable migration schemes can produce
results comparable to those by a purely fine-grained PGA;

� Spatial separation, introduced by the seeding method, is
most effective when dealing with functions that favour
increased parallelism such as the MMDP; whereas for
other functions, varying density alone might not be
sufficient, and it often has to be used in conjunction with
migration schemes.

REFERENCES

[1] Goldberg, D. (1990), Genetic Algorithms in Search, Optimisation and
Machine Learning, Addison-Wesley, Massachusetts.

[2] Mitchell, M.(1996), An Introduction to Genetic Algorithms, MIT Press.
[3] Cantu-Paz, E. (1997), A Survey of Parallel Genetic Algorithms.

Technical Report IlliGAL 97003, University of Illinois at Urbana-
Champaign.

[4] Krink, T., Rickers, P. and Thomsen, R. (2000), Applying self-organised
criticality to evolutionary algorithms. In M. Schoenauer et al. (eds)
Parallel Problem Solving from Nature - PPSN VI, pp.375-384.

[5] Kirley, M. (2002), A cellular genetic algorithm with disturbances:
optimisation using dynamic spatial Interactions.  Journal of Heuristics -
Special Issue on Parallel Meta-Heuristics (in print).

[6] Manderick, B. and Spiessens, P. (1989), Fine-grained parallel genetic
algorithms. In Proceedings of the Third International Conference on
Genetic Algorithms, Morgan Kaufmann, pp. 428-433.

[7] Tanese, R. (1989), Distributed Genetic Algorithms. In Proceeding of
the Third International Conference on Genetic Algorithms, Schaffer,
J.D. (Ed.), Morgan Kaufmann Publishers, San Mateo, pp.434-439.

[8] Belding, T.C. (1985), The Distributed Genetic Algorithm Revisited. In
L. Eschelman  (ed.). Proceedings of the Sixth International Conference
on Genetic Algorithms, pp.114-121.

[9] Cohoon, J.P., Hegde, S.U., Martin,W.N. and Richards, D. (1987),
Punctuated Equilibria: a Parallel Genetic Algorithm. In J. Grefenstette
(ed.). Proceedings of the Second International Conference on Genetic
Algorithm, Lawrence Erlbaum Associates, pp. 148-154.

[10] Whitley, D., Rana, S. and Heckendorn, R.B. (1997), Island Model
Genetic Algorithms and Linearly Sparable Problems, Evolutionary
Computing: Proceedings of the AISB Workshop, LNCS, vol: 305,
Corne, D. and Shapiro, J.L. (Eds), Springer-Verlag, Berlin, pp.109-125.

[11] Cantu-Paz, E. (1999), Migration Policies, Selection Pressure, and
Parallel Evolutionary Algorithms, Journal of Heuristics.

[12] Tomassini, M. (1999), Parallel and distributed evolutionary algorithms:
a review, in Evolutionary Algorithms in Engineering and Computer
Science, edited by Miettinen, K. et al., New York: John Wiley & Sons
ltd, pp.113 – 133.

[13] Muhlenbein, H., Schomish, M., and Born, J. (1991), The Parallel
Genetic Algorithm as Function Optimizer, Parallel Computing, 17, pp.
619--632.

[14] Sarma, J. and De Jong, K. (1996), An analysis of the effects of
neighborhood size and shape on local selecrion algorithms. In Proc 4th

PPSN, LNCS 1141, Springer Verlag, pp.236—244.
[15] Kirley, M., Li, X., and Green, D. (1998), Investigation of a cellular

genetic algorithm that mimics landscape ecology. In R. McKay et al.
(eds.) Simulated Evolution and Learning -SEAL98, volume 1585
Lecture Notes in Artificial Intelligence, Springer-Verlag, pp. 90-97.

[16] Kirley, M. (2001), MEA: A metapopulation evolutionary algorithm for
multi-objective optimisation problems. In G. Fogel et al. (eds.)
Proceedings of Congress on Evolutionary Computation. Korea
(CEC2001), IEEE Press, pp. 949-956.

[17] Stauffer, D. and Aharony, A. (1992), Introduction to Percolation
Theory - second edition, London, Washington, DC: Taylor & Francis.

[18] Wright, S. (1932), The Roles of Mutation, Inbreeding, Crossbreeding,
and Selection in Evolution, In Proceedings of the Sixth International
Congress on Genetics, pp.356-366.

[19] Collins, R. and Jefferson, D.R. (1991), Selection in massively parallel
genetic algorithms. In Proceedings of the Fourth International
Conference on Genetic Algorithms. Morgan Kaufmann.

0-7803-7282-4/02/$10.00 ©2002 IEEE


	CEC Main Menu
	CEC Table of Contents
	CEC Author Index
	----------------
	Search CD-ROM
	Search Results
	Print
	----------------
	WCCI CD-ROM Help
	----------------

