
On the Con�guration of Optimization Algorithms by
Using XML Files

E. Alba, J.M. García-Nieto, A.J. Nebro

12th March 2003

Abstract. There exist di�erent ways of
controlling and con�guring an algorithm. One
way is to hard-code the values of its parameters
in the program implementing it. This approach
is quite in�exible because we need to recompile
the program when we want to change the value
of a parameter. Thus, most programmers pre-
fer to use another solution, consisting in de�n-
ing con�guration �les which contain the values
governing the behavior of the algorithm. How-
ever, many programmers use ASCII documents
in such a way that the parameters and their val-
ues are written using ad-hoc rules, which lead to
non-standard, di�cult to understand and error
prone information. In this paper we discuss dif-
ferent approaches to con�gure an algorithm by
means of a text �le. This is by no means a mi-
nor issue, since a proper con�guration could lead
to standardization, safety and algorithm interac-
tion (e.g. cooperation). We raise this discussion
in the context of optimization algorithms and in
the aim at developing a web optimization service.
Such proposal must accommodate heterogeneous
algorithms, that should be con�gured with our
proposal by using XML �les following a common
DTD document.

Key Words. Con�guration Files, Op-
timization and Search Algorithms, XML, DTD,
Internet.

1 Introduction
When faced to the problem of controlling an al-
gorithm1, an option is to use con�guration �les to
de�ne the parameters and the techniques that the

1For the sake of simplicity, we use the term �algorithm�
to refer to the algorithm itself as well as to the program
implementing it.

algorithm must apply during its execution; typi-
cally, these �les are read by the algorithm when
it starts its execution. The other choice consists
in including the parameter values inside the own
code of the algorithm. This second approach has
obvious problems when changing values, because
recompilation is required, which leads to a waste
of time. However, this second scheme is used in
some parallel environments to avoid access to a
common con�guration �le through the network.

In this paper we address the �rst approach,
namely con�guring an algorithm by de�ning val-
ues in a con�guration �le. This method has the
advantage of not needing recompilation, and it is
easier for users to set the parameters through, for
example, a simple text editor. The access to the
con�guration �le is not considered a problem and
is thought to be granted for all the processes.

The motivation of this work is related to our
interest in achieving an ambitious goal: we want
to develop an optimization web service that in-
corporates di�erent existing algorithms in such a
way that a user can navigate using a web browser
through all them, select the algorithm, set the
parameters and run the algorithm from a remote
computer in order to solve an optimization prob-
lem. Take a look to the simpli�ed vision of the
architecture in Figure 1. We can notice in this
�gure that we de�ne a hierarchy of machines,
namely the client side, the server side and the
workers side. The �nal user is sit to the client
side and selects the algorithm and parameters
to solve the selected problem. The user also at-
taches a �le de�ning the optimization problem
in a preferred programming language (assuming
that there is at least one algorithm written in this
language in the worker side). The workers are in
charge for the execution of the algorithm by fol-

1

lowing the parameters chosen by the user. There
exist some servers allowing a dynamic addition
of workers and algorithms to the whole system,
and also a primary server to have a minimum
Internet infrastructure to guide and execute al-
gorithms considered indispensable for the whole
system. In order to create such a service, we are
forced to deal with existing algorithms, most of
them having di�erent ways of being con�gured.
This is the reason for using an extensible way
of con�guring and exchanging information inside
the system.

Client

Client

Primary_Server
Worker

Worker

Worker

Server

XML

XML

XML

XML

XML

Figure 1: Simpli�ed architecture of our target
optimization service in Internet.

Thus, we are facing a twofold objective: �rst,
dealing with di�erent con�guration �les that al-
ready exist, and, second, the need of de�ning a
"standard" for con�guration �les. The �rst goal
can be accomplished by developing some kind of
wrapper to adapt the existing �le to the stan-
dard de�nitions of the optimization web service
we want to build. The di�culty of this task de-
pends on the structure of the concrete �le and
how it can processed to �t into the requirements
imposed by the web service. To achieve the sec-
ond goal, i.e, de�ning a standard, we have neces-
sarily to de�ne the context of the standard, since
a clear solution exists in Internet: XML (the eX-
tended Markup Language) [1]. Our context is
"optimization".

In this work we begin by discussing di�erent
possibilities for dealing with plain ASCII con�gu-
ration �les. As mentioned before, if we use them
in our future web optimization system, we will
need a wrapper code written in some language
such as C, C++ or Java, to be integrated in
the system. The second part of this paper will
focus on proposing a concrete Data Type Docu-

ment or DTD that would serve as our "standard"
for de�ning future compatible con�guration �les.
This will clearly remove the necessity of using
wrappers as long as the algorithms conform to
this standard. The highly promising extensions
and applications of such an optimization system
con�gured and manipulated through XML would
have a large impact when put in contact to other
XML related standards, such us XML-RPC and
SOAP [2]. These new standards include a APIs
for manipulating XML �les, and they would per-
mit our system to be used by a wide audience of
potential users, thus having a deep impact in the
optimization and search research community.

The structure of this document is as follows.
In the following section (Section 2) we address
some di�erent approaches to use a con�guration
�le written in ASCII code, without considering
XML as the language to be used. In Section 3,
we present some general ideas about XML, some
related technologies, and the requirements that a
web optimization service will impose on the XML
�les. In Section 4, we discuss our proposal of a
concrete DTD which will allow us to de�ne XML
�les in order to establish the standard behavior
for new algorithms. Some explained examples
are included in Section 5. Finally, we summarize
our contributions, conclusions and future work in
Section 6.

2 Non-standard ASCII Con-
�guration Files

In this section we discuss several approaches to
con�gure an algorithm by using ASCII plain �les.
The problem to solve is how to write the the pa-
rameters and/or their values inside a �le. There
are a number of approaches than can be used.
For example, we can write all the values in the
�le, identifying them using some kind some kind
of separator. Some examples of separators are
blank spaces, tabulators or carriage returns. This
con�guration assigns to each attribute a �xed po-
sition in the �le, and it makes no explicit assign-
ment of values to attributes, since only values are
placed inside the �le. An example in depicted in
Figure 2.

Although processing this kind of �les is sim-

2

1.0
0.1
if_better
100
EvalFunc.MOD

Figure 2: Simple ASCII con�guration �le. Each
line represents a value for an implicit attribute.

ple, it is error-prone, because the missing of a
single attribute can lead to assign wrong values
to the rest of parameters. These errors can be
di�cult to detect. Furthermore, the understand-
ing of the parameters can be di�cult to the user.
A small improvement is to use comments, which
can appear in any part of the document, like it
is shown in the example of Figure 3. Comments
are used to explain individual values, and they
can also be used to add some meta-information
like author, version, problem or algorithm being
used (i.e, the comment style used by the language
Java). Comments usually span through one line
beginning with a given indicator, such as // or
#. Explanatory comments greatly helps the user,
but the document still remains an ad-hoc and a
non-standard input mechanism. Reading com-
ments is quite simple, so this approach implies
only a little overhead for the programmer and
the impact in the e�ciency of the algorithm is
negligible.

5 // number of independent runs

500 // number of evaluations

300 // Markov chain length

0.88 // temperature decay

0 // display state, LAN-configuration

200 // the global state is updated in this number of evaluations

0 // 0: asynchronous mode // 1: synchronous mode

500 // interval of iterations to cooperate (0 if no cooperation)

Figure 3: ASCII �le with comments.

The clear improvement on all the precedent
formats is to include explicitly the name of the
parameters and their values in the con�guration
�le, in a similar way as environment variables are
set in the UNIX shells. This scheme furnishes the
user with a larger freedom to allocate the values
in any place of the �le (see an example in Fig-

##
CONFIGURATION FILE : Steady State Genetic Algorithm
Use the '#' character at the
beginning of a line for comments
##
Parameters of Algorithm
##

number_of_genes = 10
#
gene_length = 1
#
population_size = 100
#
crossover_prob = 0.8
#
mutation_prob = 0.00123
#
max_n_evals = 100
#
fitness_function = ProblemOneMax.java
#

Figure 4: Commented ASCII con�guration �le
with pairs attribute-value.

ure 4). This approach leads to readable con�gu-
ration �les, in which we can also de�ne sections
of similar values, not only the attribute names
of such values. Including comments in this �le
is the �nal requirement to have a �exible, clear
and, at the same time, easy to read con�guration
�le.

[NUMBER_OF_OPERATORS]
5

[OPERATORS]
RW
RANDOM
RECOMBINE_ES 1
MUTA_ES 1.0
REP_LEAST_FIT

[OUTPUT_DISPLAY]
NOTHING

[PROBLEM_CONFIG_FILE]
bc_train.net

[OUTPUT_FILE]
foo.out

Figure 5: Commented ASCII con�guration �le
with pairs variable-value and sections.

Al last, we can use labels, which can be
de�ned like words locked up in brackets, as
shown in Figure 5. In this example, the label
[NUMBER_OF_OPERATORS] indicates that 5 is the
number of parameters of the algorithm, and the
label [OUTPUT_DISPLAY] is used to indicate to
the algorithm the kind of verbose information to
be printed on the standard output during its ex-

3

ecution.
As we use format independent features, com-

ments, and labels, we progress towards con�gura-
tion �les that are more understandable for users
and easy to be processed. Our last label example
can be considered as a good solution, but a prob-
lem still remains cached: it is an ad-hoc mecha-
nism, the sections are problem-dependent, and it
is di�cult to deduce issues as valid data types or
attribute values from the �le itself. In next sec-
tion we make a proposal to �x all these problems
using XML.

3 XML to the Rescue
In order to de�ne standard, compatible and �ex-
ible con�guration �les we focus on new Internet
technologies. In this context, XML appears as
the most promising markup language to be con-
sidered for such a goal. XML seems to be the
best choice if we want to use a technology with
good future perspectives; besides, XML will allow
us to con�gure algorithms as well as to exchange
information between them or even inside our tar-
get web optimization system. Finally, XML is the
gate to use other modern technologies, like SOAP
for remote object access and procedure call, as
well as other initiatives that can appear in the
future, because they will relay probably also on
XML.

XML will endow our system with rich fea-
tures like an improved con�guration, readability,
connectivity with other systems, on-line cooper-
ation between di�erent algorithms, and access to
other emerging Internet technologies. However,
using XML will require parsing such �les with
specialized APIs like DOM or SAX, which re-
quires an extra e�ort to the programmer and,
perhaps, a small overhead when reading the pa-
rameters. If XML is used only for con�gu-
ration, the overhead is negligible; however, if
XML is used also for information exchange be-
tween the components of a parallel algorithm,
then the overhead could be appreciable. In sum-
mary, we can state that the advantages clearly
outweigh the drawbacks, and hence we will un-
dergo the step of de�ning an appropriate sub-set
of attributes and types for our target optimiza-
tion/search algorithms.

Many examples of languages developed after
XML exist in di�erent �elds of application. Some
of them are the following ones:

• CDF (Channel De�nition Format). It de-
�nes channels by which to send information
periodically.

• CML (Chemical Markup Language). Chem-
ical equations and data.

• MathML (Mathematical Markup Language).
Mathematical equations and expressions.

• OSD (Open Software Description). Software
packages to install by remote way.

• AML (Algebraic Modelling Languages).
Speci�cation of algebraic models.

We face this task from the point of view of
achieving a light de�nition of XML speci�cation
in the form of a DTD (Document Type De�ni-
tion). In a DTD �le we declare the format of the
sub-language and the type of the elements, lead-
ing to a hierarchy of labels and sub-labels that
will hold the information and values to con�gure
or even to run our algorithms. A DTD can be em-
bedded inside modern XML schemas, which are
more powerful but more complicated than DTD,
and we pursuit an easy scheme to control our al-
gorithms through well conformed XML �les.

A more ambitious approach will specify not
only the parameters rather the algorithm itself
entirely in an XML document. However, we do
not want to design a full new language for spec-
ifying algorithms, like those mentioned before
(CDF, CML, etc); instead, we want to control
existing (or new, in the future) algorithms. The
desired functionality will account for several tar-
get objectives:

• Con�gure an algorithm, in a uniform way for
all the available algorithms.

• Identify the users of the algorithm, in order
to interact with them safely.

• Return the results of the algorithms when
they �nish.

• De�ne the details about how the algorithm
must be compiled, linked and/or run.

4

Thus, we want a DTD de�nition capable of
supporting information for the algorithms, that
allows to di�erentiate among users to return the
results to them, and with the ability of admitting
existing algorithms, probably written in di�er-
ent languages on di�erent operating systems. In
fact, it is likely that the user send the function to
optimize encapsulated in such an XML �le that
conforms the DTD we are about to propose.

4 DTD Design
A DTD is implemented by following a hier-
archic structure, so we begin by dividing our
documents in four main information blocks
which are the children of a root element called
optimization_algorithm. In Figure 6, we can
see the relationship among elements in a well-
conformed XML document.

<optimization_algorithm >

<client> <params><features> <results>

<client_name>

.

.

.

<client_id>

<language>

.

.

.

<comment>

<number_of_genes>

.

.

.

<fitness_function>

<chromosome>

.

.

.

<computation_time>

Figure 6: Proposed hierarchy of DTD elements.

From <optimization_algorithm> down we
give structure to our DTD:

• <client>. Information about the client for
the system.

• <features>. Features of the algorithm to
be run.

• <params>. Input parameters for the algo-
rithm coming from the client side.

• <results>. Results from the algorithm go-
ing to the client side.

Within each main element we de�ne a series
of sub-elements with their corresponding data
types (i.e. labels and contents):

1. <client>. It contains elements with infor-
mation about the client machine and user,
and it must appear once in each XML docu-
ment. We can see these elements in Table 1.

Element Description
<client_name> Name of the client who

uses the service. It must
appear once.

<client_ip> IP address of the client
machine. It must appear
once.

<client_id> Client identi�er. It can
appear zero or once.

Table 1: Table of <client> elements.

2. <features>. It contains elements concern-
ing data of the implementation of the algo-
rithms and the commands required for their
manipulation. It must appear once in each
document. We can see the elements in Table
2.

Element Description
<language> Programming language in

which the algorithm is im-
plemented. It must ap-
pear once.

<compilation>
Algorithm compilation
command. It must appear
once.

<execution> Algorithm execution com-
mand. It must appear
once.

<online> Returned from/during the
execution of the algo-
rithm. It can appear once
or not.

<comment> Additional comments on
the algorithm. It can ap-
pear once or not.

Table 2: Table of <features> elements.

3. <params>. It contains elements with in-
formation of the parameters that the algo-
rithms are going to interpret. It must ap-
pear once in each document with the added

5

attribute <type> of algorithm. See the list
of allowable types of algorithm available in
Figure 11). In Table 3 we include the list of
sub-elements of the <params> element.
Each one of these elements can appear zero
or once in the XML document. They can
also contain other sub-elements or attributes
speci�ed in the DTD, which are shown in
Figures 12, 13 and 14.

4. <results>. It contains elements that give
information of the results after the execu-
tion of the algorithms. Their appearance is
optional in the XML document. Their ele-
ments are included in Table 4, where each
element can appear as well zero or once in
XML document.

5 Examples
In this section we proceed to show some exam-
ples of using the DTD. In Figure 7 we present
an XML document de�ning the parameters for a
heuristic genetic algorithm. The reader can dis-
tinguish the DTD blocks of information, namely
type of the algorithm, input and output parame-
ters, information of the problem to solve and a �-
nal block of details about the implementation and
running requirements. In the <features> sec-
tion the reader can �nd the details on its imple-
mentation, e.g. the programming language was
Modula 2 for this algorithm.

In Figure 8 we describe an XML document
including a section of the result data returned
by the execution of a Steady State Genetic Al-
gorithm [6]. In the <features> section we can
notice that the language was Java, as well as the
compiling and execution commands to be used
for executing the algorithm.

In Figure 9 we show an example evolution
strategy having di�erent parameters inside the
same block sections that showed in the previous
example. We now mark these sections to make
them obvious for the reader. The <features>
section marks the programming language as be-
ing C++ and details the make command and the
subsequent execution of the algorithm.

Finally, in Figure 10 we give an example of a
simulated annealing heuristic with attributes not

Element Description
number_of_genes Number of genes in the

chromosome
length_of_gene Gene length
population_size Number of individuals
population_width Width of the popula-

tion if using a grid
population_height Height of the popula-

tion if using a grid
population_number Number of

(sub)populations
crossover_prob Crossover probablility
mutation_prob Mutation probability
max_n_evals Maximum number of

evaluations
migration Migration parameters
fitness_function Name of the �tness

function code �le
elitism Parameters for elitist

selection
replacement Replacement policy
selection Parameters of selection
neighb Neighborhood struc-

ture
cost_function Name of the cost func-

tion
min_temperature Minimum temperature
max_temperature Maximum temperature
temperature_decay % Decay of tempera-

ture
markov_chain
_length

Markov chain length

lower_bound Lower bound
upper_bound Upper bound
long_term_
memory_length

Long memory length

short_term_
memory_length

Short memory length

candidate_list_
length

Candidate list length

max_distance Intermediate distance
between two solutions

strategy Node strategy
others It describes other pa-

rameters (for miscella-
neous elements)

Table 3: Table of <params> elements.

6

Element Description
allele Allele
individual Individuals
chromosome Chromosome
fitness Fitness
solution Solution (generic ele-

ment)
avg_fitness Average of �tness
stddev_fitness Standard deviation of

the futness
best_fitness Best �tness
worst_fitness Worst �tness
migrations Number of migrations
computation_time Computation time
communication_time Communication time
run_time Total time of execution
error Error message

Table 4: Table of <results> elements.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE optimization_algorithm
SYSTEM "optimization_algorithm.dtd">
<optimization_algorithm>

<client>
<client_name>jnieto</client_name>
<client_ip>192.168.198.160</client_ip>
<client_id>null</client_id>

</client>
<features>

<language>Modula 2</language>
<compilation>compile.bat</compilation>
<execution>exe_cfxx.bat</execution>
<online></online>
<comment></comment>

</features>
<params type="cea">

<number_of_genes>10</number_of_genes>
<length_of_gene>2</length_of_gene>
<population_width>6</population_width>
<population_height>4</population_height>
<crossover>

<crossover_prob>1.0</crossover_prob>
</crossover>
<mutation>

<mutation_prob>0.1</mutation_prob>
</mutation>
<max_n_evals>100</max_n_evals>
<fitness_function>EvalFunc.MOD
</fitness_function>
<replacement type="if_better" />
<neighb>4</neighb>

</params>
</optimization_algorithm>

Figure 7: XML Document for a Cellular Genetic
Algorithm.

already included in the previous XML �le, since
SA is a di�erent kind of heuristic (not belonging
to any family of evolutionary algorithms like it
does occur with the preceding examples). Again,
similar sections exist. The <features> section
and <results> section contain our �nal exem-
pli�cation of the kind of contents that our DTD

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE optimzation_algorithm
SYSTEM "optimzation_algorithm.dtd">
<optimzation_algorithm>

<client>
<client_name>pmarmol</client_name>
<client_ip>192.168.198.3</client_ip>
<client_id>12</client_id>

</client>
<features>

<language>Java</language>
<compilation>javac SSea.java</compilation>
<execution>java SSea</execution>
<online></online>
<comment></comment>

</features>
<params type="ssea">

<number_of_genes>10</number_of_genes>
<length_of_gene>2</length_of_gene>
<population_size>100</population_size>
<crossover>

<crossover_prob>0.8</crossover_prob>
</crossover>
<mutation>

<mutation_prob>0.00123</mutation_prob>
</mutation>
<max_n_evals>1000</max_n_evals>
<fitness_function>ProblemOneMax.java
</fitness_function>

</params>
<results>

<chromosome>11111101110001111111</chromosome>
<fitness>125.1</fitness>
<computation_time>2 seconds</computation_time>
<error></error>

</results>
</optimzation_algorithm>

Figure 8: XML Document for a Steady State Ge-
netic Algorithm.

allows using.

7

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE optimization_algorithm
SYSTEM "optimization_algorithm.dtd">
<optimization_algorithm>

client

features

params

results

</optimization_algorithm>

<client>
<client_name>jnieto</client_name>
<client_ip>192.168.198.3</client_ip>
<client_id>null</client_id>

</client>

<features>
<language>C++</language>
<compilation>make COMPES</compilation>
<execution>make EXEES</execution>
<online></online>
<comment></comment>

</features>

<params type="es">
<number_of_genes>10</number_of_genes>
<length_of_gene>2</length_of_gene>
<population_size>100</population_size>
<mutation>

<mutation_prob>0.1</mutation_prob>
</mutation>
<max_n_evals>100</max_n_evals>
<fitness_function>problem.cpp
</fitness_function>
<replacement type="worst">
<selection type="roulette_wheel">
<recombine type="linear">

</params>

<results>
<best_fitness>1.3356</best_fitness>
<avg_fitness>1.0034</avg_fitness>
<worst_fitness>0.9994</worst_fitness>
<computation_time>2 seconds
</computation_time>
<error></error>

</results>

Figure 9: XML Document for an Evolution Strat-
egy.
<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE optimization_algorithm
SYSTEM "optimization_algorithm.dtd">
<optimization_algorithm>

<client>
<client_name>ealba</client_name>
<client_ip>192.168.198.3</client_ip>
<client_id>6</client_id>

</client>
<features>

<language>C++</language>
<compilation>make COMPONEMAX</compilation>
<execution>make EXEONEMAX</execution>
<online></online>
<comment></comment>

</features>
<params type="sa">

<max_n_evals>500</max_n_evals>
<fitness_function>onemax</fitness_function>
<markov_chain_length>300</markov_chain_length>
<temperature_decay>0.88</temperature_decay>

</params>
<results>

<chromosome>1111111111</chromosome>
<fitness>127.5</fitness>
<computation_time>1 second</computation_time>
<error></error>

</results>
</optimization_algorithm>

Figure 10: XML Document for a Simulated An-
nealing.

6 Conclusions and Future
Work

In this document we have discussed di�erent
plain ascii approaches to con�guring optimiza-
tion algorithms. Our goal has been to de�ne how
di�erent algorithms could be managed from a
common web optimization service that will serve
as a front end for users to interact with them.

Since we intend to send code �les containing
the optimized function, parameters for con�gur-
ing the algorithms, returned results to the user,
and e�ectively run the algorithm in remote com-
puters, we have selected XML to de�ne our small
language in the form of a DTD document. We
intend to improve on this initial de�nition in the
future, for example to allow algorithms to inter-
act each other by exchanging such XML docu-
ments to guide the search.

The potential advantages of XML, its �exi-
bility and its relationship with other technologies
and standards support our initial guess of making
research about an Internet system that could be
implemented and managed with a proper DTD
or XML schema de�nition.

8

Appendix: DTD Internals

<?xml version='1.0' encoding='us-ascii'?>

<!-- Name optimization_algorithm.dtd -->
<!-- Version 1.0 -->
<!-- Author Jose Manuel Garcia Nieto -->
<!-- Description DTD for optimization_algorithm.xml -->

<!-- root element -->
<!ELEMENT optimization_algorithm (client, features, params, results?)>

<!-- client specifications -->
<!ELEMENT client (client_name,client_ip,client_id?)>
<!ELEMENT client_name (#PCDATA)>
<!ELEMENT client_ip (#PCDATA)>
<!ELEMENT client_id (#PCDATA)>

<!-- main features of the algorithm -->
<!ELEMENT features (language, compilation, execution, online?, comment?)>
<!ELEMENT language (#PCDATA)>
<!ELEMENT compilation (#PCDATA)>
<!ELEMENT execution (#PCDATA)>
<!ELEMENT online (#PCDATA)>
<!ELEMENT comment (#PCDATA)>

<!-- language (language of programming of the algorithm) -->
<!-- compilation (compilation instruction/s) -->
<!-- execution (execution instruction/s) -->
<!-- online (online results) -->
<!-- comment (comment about the algorithm) -->

<!-- all kinds of parameters -->
<!ELEMENT params (number_of_genes?, length_of_gene?, population_size?,
population_width?, population_height?, population_number? ,crossover?,
mutation?, max_n_evals?, migration?, fitness_function?, elitism?,
replacement?, selection?, recombine?, neighb?, max_temperature?,
min_temperature?, markov_chain_length?, temperature_decay?, upper_bound?,
lower_bound?, short_term_memory_length?, long_term_memory_length?,
candidate_list_length?, max_distance?, strategy?, cost_function?, others?)>

<!ATTLIST params
type

(ssea|mea|genea|cea|dea|pea|cgpea|cfpea|sa|ts|grasp|bb|dp|simpleea|ee)
#REQUIRED >

<!-- EA (Evolutionary Algorithm) -->
<!-- ssea (Steady State EA) -->
<!-- mea (Messy EA) -->
<!-- genea (Genetational EA) -->
<!-- cea (Celular EA) -->
<!-- pea (Parallel EA) -->
<!-- cgpea (Coarse Grain PEA) -->
<!-- cfpea (Fine Grain PEA) -->
<!-- sa (Simulated Annealing) -->
<!-- ts (Tabu Search) -->
<!-- grasp (Greedy Randomized Adaptive Search Procedures) -->
<!-- bb (Branch and Bound) -->
<!-- dp (Dynamic Programing) -->
<!-- simpleea (simple EA) -->

Figure 11: DTD part 1.

<!-- parameter entity to define the range in numeric type-->
<!ENTITY % range

"type (int|double|float|long|short|byte|boolean) #IMPLIED
min CDATA #IMPLIED
max CDATA #IMPLIED">

<!ELEMENT number_of_genes (#PCDATA)>
<!ATTLIST number_of_genes %range;>

<!ELEMENT length_of_gene (#PCDATA)>
<!ATTLIST length_of_gene %range;>

<!ELEMENT population_size (#PCDATA)>
<!ATTLIST population_size %range;>

<!-- only for cea -->
<!ELEMENT population_width (#PCDATA)>
<!ATTLIST population_width %range;>

<!-- only for cea -->
<!ELEMENT population_height (#PCDATA)>
<!ATTLIST population_height %range;>

<!ELEMENT population_number (#PCDATA)>
<!ATTLIST population_number %range;>

<!ELEMENT crossover (crossover_prob)>
<!ATTLIST crossover

type (spx|dpx|upx|apx) #IMPLIED>

<!ELEMENT crossover_prob (#PCDATA)>
<!ATTLIST crossover_prob %range;>

<!ELEMENT mutation (mutation_prob)>

<!ELEMENT mutation_prob (#PCDATA)>
<!ATTLIST mutation_prob %range;>

<!ELEMENT max_n_evals (#PCDATA)>
<!ATTLIST max_n_evals %range;>

<!ELEMENT migration (migration_freq?,migration_rate?)>
<!ATTLIST migration

type (best|worst|random|null) #IMPLIED>

<!-- migration_freq (frequency of migration regarding number of
evaluations)-->
<!-- migration_rate (number of individuals that emigrate)-->

<!ELEMENT migration_freq (#PCDATA)>
<!ATTLIST migration_freq %range;>

<!ELEMENT migration_rate (#PCDATA)>
<!ATTLIST migration_rate %range;>

Figure 12: DTD part 2.

References
[1] E R Harold, XML Bible, IDG Books, 1999.

[2] B McLaughlin, Java and XML, O'Relly,
2001.

[3] A Pew, Instant Java, The Sunsoft Press -
Pretince Hall, 1996.

[4] A. Díaz, F. Glover, H. M. Ghaziri, otros. Op-
timización Heuristica y Redes Neuronales.
Paraninfo S.A, 1996.

[5] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs, Springer-
Verlag, 1992.

[6] E. Alba, J. M. Troya. A Survey of Parallel
Distributed Genetic Algorithms, Complex-
ity, 4(4):31-52 1999.

9

<!-- for generational EA -->
<!-- K best individuals to next generation -->
<!ELEMENT elitism (#PCDATA)>

<!ELEMENT replacement EMPTY>
<!ATTLIST replacement

type (worst|random|if_better|always|null) #IMPLIED>

<!ELEMENT selection EMPTY>
<!ATTLIST selection

type
(roulette_wheel|ranking|random|best_individual|tournament|null) #IMPLIED>

<!--- for Evolutive Strategy -->
<!ELEMENT recombine EMPTY>
<!ATTLIST recombine

type (ee|linear|null) #IMPLIED>

<!-- neighborhood type and number of neighbors, only for cea -->
<!ELEMENT neighb (#PCDATA)>
<!ATTLIST neighb

type (linear|compact|null) #IMPLIED>

<!-- maximum start temperature for simulated annealing -->
<!ELEMENT max_temperature (#PCDATA)>
<!ATTLIST max_temperature %range;>

<!-- minimum allowed temperature for simulated annealing -->
<!ELEMENT min_temperature (#PCDATA)>
<!ATTLIST min_temperature %range;>

<!ELEMENT markov_chain_length (#PCDATA)>
<!ATTLIST markov_chain_length %range;>

<!ELEMENT temperature_decay (#PCDATA)>
<!ATTLIST temperature_decay %range;>

<!-- for tabu search -->
<!ELEMENT short_term_memory_length (#PCDATA)>
<!ATTLIST short_term_memory_length %range;>

<!-- for tabu search -->
<!ELEMENT long_term_memory_length (#PCDATA)>
<!ATTLIST long_term_memory_length %range;>

<!-- for tabu search -->
<!ELEMENT max_distance (#PCDATA)>
<!ATTLIST max_distance %range;>

<!-- for branch and bound -->
<!ELEMENT upper_bound (#PCDATA)>
<!ATTLIST upper_bound %range;>

<!-- for branch and bound -->
<!ELEMENT lower_bound (#PCDATA)>
<!ATTLIST lower_bound %range;>

Figure 13: DTD part 3.

<!-- for grasp -->
<!ELEMENT candidate_list_length (#PCDATA)>
<!ATTLIST candidate_list_length %range;>

<!-- for branch and bound -->
<!ELEMENT strategy EMPTY>
<!ATTLIST strategy

type (fifo|lifo|other) #IMPLIED>

<!ELEMENT fitness_function (#PCDATA)>
<!ELEMENT cost_function (#PCDATA)>

<!-- generic element -->
<!ELEMENT others (others_id,others_value)>
<!ELEMENT others_id (#PCDATA)>
<!ELEMENT others_value (#PCDATA)>
<!ATTLIST others_value %range;>

<!-- others_id (id of other possible parameter) -->
<!-- others_value (value of other possible parameter) -->

<!-- results of the algorithm -->
<!ELEMENT results (allele?, chromosome?,individual?, fitness?,
best_fitness?, worst_fitness?, migrations?,

solution? ,avg_fitness?, stddev_fitness?,
computation_time?, communication_time?,

run_time?, error?)>

<!ELEMENT allele (#PCDATA)>

<!ELEMENT individual (#PCDATA)>
<!ELEMENT chromosome (#PCDATA)>
<!ELEMENT fitness (#PCDATA)>
<!-- generic solution -->
<!ELEMENT solution (#PCDATA)>

<!ELEMENT avg_fitness (#PCDATA)>
<!ELEMENT stddev_fitness (#PCDATA)>
<!ELEMENT best_fitness (#PCDATA)>
<!ELEMENT worst_fitness (#PCDATA)>

<!ELEMENT migrations (#PCDATA)>

<!ELEMENT computation_time (#PCDATA)>
<!ELEMENT communication_time (#PCDATA)>
<!ELEMENT run_time (#PCDATA)>
<!ELEMENT error (#PCDATA)>

Figure 14: DTD part 4.

10

